Tips to Advance Welding Skills

7 Tips to Advance your Welding Skills

Whatever your project – whether mending a metal fence or repairing teeth on a backhoe bucket, the following advanced welding tips will help you get the job done faster, and with less waste and effort.

1. Make Good Use of Magnets

Choose from a wide range of specialized magnets or clamps to use as “third hands.” These can securely hold welding tabs, brackets or gussets to the workpiece, lids on a box, or corners perpendicular during the welding process. Use an adjustable welding table to support smaller items. Don’t remove magnets until the weld has completely cooled, so that the hot metal doesn’t shrink and ruin the alignment.

2. Welding Out of Position

If you can’t fix your workpiece in a comfortable, flat welding position using magnets and clamps, it’s important to remember that the weld puddle may drip. If welding overhead, move quickly and steadily using a circular motion but keep the puddle narrow. To allow the puddle to cool faster, maintain a lower electrode temperature by reversing polarity, and use less voltage so that the puddle remains small.

3. Completely Clean Out the Area to Be Repaired

Impurities such as oil, grease, dust, and moisture, can cause problems later if they are absorbed into the metal. Clean out the area thoroughly using a sander or wire brush and wipe away any debris. If repairing cracks, grind them out with a grinder before welding. Where the shape and size of the crack make it impossible to reach the bottom, use a slower welding speed, which allows time for impurities, such as hydrogen bubbles, to rise to the surface before they become trapped.

4. Beware of Hydrogen

Hydrogen is the enemy, when it comes to welding. Certain metals, such as high-strength steel, are more susceptible to hydrogen cracking, which may occur long after the weld is completed. Welding thick or highly restrained pieces can also cause cracking. Before welding, seek and destroy any alien material, such as paint, dust, or grease. Then preheat the metal before, during, and even after welding for a few hours. This slows down the cooling time so that more hydrogen can escape before the metal solidifies.

5. Bead-Laying Tips

With stick welding, it’s important to run a straight bead by keeping an even travel speed – and maintain the angle of the rod so that the slag trails behind. When you get to the end of the weld, run the rod back in the other direction an inch or so, in order to prevent a crater developing that could crack later.

6. Choose the Best Electrode for the Job

For general use stick welding, choose a 6011 electrode, but for thinner material, go with a 6013. Rod diameter should be higher for thicker metal and smaller for thinner stock.

In the case of high-carbon or other high-alloy steels that are harder to weld, it’s important to use low-hydrogen electrodes. Be sure to leave them in the package until the last minute, to expose them to air for as short a time as possible.

7. Be Aware of Aluminum Welding Differences

When welding aluminum, different materials and techniques are required. Aluminum should be welded with either a TIG or MIG process. Before welding, remove oxides from the aluminum surface using a stainless steel brush and solvents. These oxides have a very high melting temperature, which can inhibit the filler from welding with the metal. Use only argon-helium or argon gas to shield the weld. Preheat the area, but don’t overheat, which could cause burn-through. At the end of the weld, don’t leave a crater, which will inevitably lead to cracking. Instead back weld for an inch or so.

For all your welding supplies, including tools, consumables, and accessories, visit Industrial Metal Supply.


How to: A Beginner’s Guide To Welding

Welding two pieces of metal together forms a permanent bond in which the metals are heated to a melting point, mixed together and then cooled, creating a single object. This type of bond is stronger than other bonds, such as soldering, which can be reversed.

There are four basic types of welding: MIG, TIG, flux-cored, and stick. The process and welding techniques to be used depend on the application, the types of metal to be welded, and the skill and experience of the welder.

MIG Welding

New welders just learning how to weld should start with metal inert gas (MIG) welding, also known as gas metal arc welding (GMAW). MIG is a type of electric arc welding, which relies on creating an electrical circuit that runs through the objects to be welded together and a welding wire, which acts as an electrode.

When the welding wire touches the metal object, the circuit is completed. The wire is then pulled back a short distance, causing an electric arc that heats up to thousands of degrees Fahrenheit, melting the wire and partially melting the two pieces of metal. This creates a melt pool where all three metals merge to become one as it cools and solidifies, leaving a bead along the welded seam.

As the welding action continues down the seam, the wire melts off and more wire is fed continuously from the tip of the welding gun. At the same time, a gas is diffused from the gun, spreading around the arc to shield the welded area from contaminants in the air, such as oxygen and nitrogen.

TIG Welding

Tungsten inert gas (TIG) welding requires more skill and takes longer than MIG welding, but it offers more precision. TIG, also known as gas tungsten arc welding (GTAW), can be used to weld aluminum and alloys, such as 4130 chrom-moly.

TIG welding is similar to MIG, but instead of a consumable wire, the electrode used is a tungsten metal rod inside the welding gun. The welder holds the gun in one hand while feeding a filler rod in the other hand. As the arc creates a melt puddle from the two work pieces, the heat of the melt puddle melts the filler rod, so that all three mix together in the puddle. Like MIG welding, TIG welding guns disperse a shielding gas to protect the new weld.

A TIG welding machine also includes a foot pedal to adjust the current running through the electrical circuit created between the metal objects and the tungsten electrode. This can be used to slowly increase or decrease the heat applied to the metal, which can help prevent brittleness caused by thermal shock.

Flux-Cored Welding

A third type of welding, called flux-cored arc welding (FCAW), uses a continuously fed electrode tube in place of the wire used for MIG welding. The tube is metal on the outside, with a flux agent in the core. As the flux melts during welding action, it creates a liquid slag and gas that shields the weld from contaminants. This provides better protection for the weld than the shield gas used in MIG welding, especially where strong breezes might disperse the gas, but it also results in more spatter which must be cleaned up afterwards.

Stick Welding

Otherwise known as shielded metal arc welding (SMAW), stick welding is a two-handed method, like TIG. Stick welding uses a metal filler rod, or stick, coated with flux. As the stick material melts in the heat, the flux coating also melts, creating both a gas and a liquid slag, which act to shield the weld from oxidation. As with FCAW, shield gas does not have to be dispensed during the welding process but the leftover slag leaves a mess requiring cleanup using a sander or solvents.

Welding Equipment

Once the method of welding has been decided, the next step is to select the proper welding equipment. Welders can choose either a MIG welder or a MIG/Stick/TIG multi-process welder which can be used for all four basic types of arc welding.

Along with the proper machine, the next important piece of equipment required is a welding helmet to protect the face and especially the eyes, from the extreme heat and bright light created by the electric arc. The latest technology has made possible auto-darkening helmets with vision screens that instantly adjust to the light level so that the welder has constant visual input.

Welders also need sturdy leather gloves and shoes, as well as caps, long-sleeved cotton shirts, bibs, overalls, and/or aprons to protect their skin from sparks.

Welding Materials

Materials needed for welding include consumables, such as MIG wire and flux-cored wire in various diameters and materials, welding tips, electrode sticks or tubes, flux, and TIG or gas brazing rods.

Other useful equipment includes magnets and clamps to hold metal objects in place during welding, adjustable welding tables and workstands, and fiberglass welding blankets to prevent the spread of sparks.

Weld-on tabs in a variety of sizes and shapes are used to create flanges, holes, handles, and other mechanical parts when welded to a pipe or other metal object.

Welding Methods

Each welder develops his or her preferred welding techniques. One of the most commonly used is nicknamed “stacking dimes,” which ends up looking like a string of round coins overlapping along the length of the weld.

As the welding arc liquefies a small pool of metal, the welder pushes the melt pool ahead with the electrode, using a fluid motion similar to writing a series of the letter “e” in cursive. Alternative motions may be described as, “figure 8,” or “half-moon.” The key to each type of movement is to ensure that the electrode pushes the melt pool back and forth evenly between the two workpieces, so that both are fully welded.

Some welders prefer to pull, rather than push the melt pool along, depending on their handedness (right or left) and the position of the workpiece. When MIG welding, the choice is a personal preference.

With TIG, the welder pushes the puddle along the seam, making sure to move back and forth, all the while dipping the end of the rod in and out of the puddle with the other hand.

However, stick and flux-cored welding requires a pulling motion, to avoid welding over the melted flux slag, which creates porosity and “wormholes” in the finished weld.

Material Differences

Welding different types of metal varies, depending on the different physical characteristics of each. For example, stainless steel doesn’t transfer heat as well as other metals, so it’s easy to build up too much heat in the weld area, causing the steel to warp and reducing its corrosion resistance. To control the heat, reduce the current on the welding machine and speed up the movement of the torch.

Compared with all types of steel, aluminum has a much higher thermal conductivity, as well as a lower melting point. It is also highly reactive to air, creating a hard oxidation layer on the surface. Because this oxidation layer melts at a much higher temperature than the aluminum underneath, it must be removed with a wire brush or chemical solvent before the welding begins.

Aluminum can be welded using both TIG and MIG methods, but aluminum filler wire is quite soft and can easily get tangled in the wire feeder of a MIG gun. To prevent this, use a Teflon or plastic liner in the wire feeder and guide tubes to support the wire from the feeder to the gun.

Aluminum welding requires a higher amperage welding machine and faster welding speed than steel to avoid “burning through” the base metal, melting a hole with too much heat. Aluminum welds also must be well protected from oxidation with an inert shield gas, such as argon.