How to Choose the Right Shooting Target

Picking the best shooting targets can be tricky. The process involves several choices, beginning with the purpose of the practice, gun type, shooting distance, and ammunition.

For example, duck hunters use clay “pigeons” catapulted into the air to practice taking down a moving target with a rifle, while law enforcement officers use a silhouette for training with handguns.

Steel Shooting Targets

Shooters may choose a steel target for long-range practice, such as the AR500 (short for abrasion resistant steel with a Brinell hardness of 500). Steel targets provide a satisfying “ping” sound, letting the shooter know they have hit the mark.

The AR500 target is a tough, long-lasting choice, and both sides can be used, adding to the life of the target. The AR500 typically comes in either a 1/2″ or 3/8″ thickness, in a gong shape with two “ears” that can be loosely chained to a target rack. This type of mounting allows the target to swing when hit, and then return to its original position.

The AR500 can be used for rifle, pistol and shotgun practice, depending on the distance, target thickness and type of ammo used. Because steel targets may cause sparks or flying metal debris, always follow the manufacturer’s recommendations.

Paper & Cardboard Shooting Targets

In contrast to steel targets, paper targets are not re-usable, but they offer other benefits. Paper or cardboard targets, which can easily be taped to a target board, are much cheaper than metal, and they provide a permanent record. Many different styles are available, with varying details that make practice more interesting, and potentially more useful.

For example, a paper target illustrated with specific animal physiology can help hunters bag more game. Targets with incremental rings or grids can help a competitive benchrest rifle shooter improve both accuracy and precision.

For those interested in handgun practice simulating self-defense scenarios, cardboard or paper silhouette targets made for the International Defensive Pistol Association (IDPA) come with the official scoring rings, allowing shooters to improve their competitive skills.

From paper to clay to metal – the best shooting targets make target practice more productive and more enjoyable.

How to: A Beginner’s Guide To Welding

Welding two pieces of metal together forms a permanent bond in which the metals are heated to a melting point, mixed together and then cooled, creating a single object. This type of bond is stronger than other bonds, such as soldering, which can be reversed.

There are four basic types of welding: MIG, TIG, flux-cored, and stick. The process and welding techniques to be used depend on the application, the types of metal to be welded, and the skill and experience of the welder.

MIG Welding

New welders just learning how to weld should start with metal inert gas (MIG) welding, also known as gas metal arc welding (GMAW). MIG is a type of electric arc welding, which relies on creating an electrical circuit that runs through the objects to be welded together and a welding wire, which acts as an electrode.

When the welding wire touches the metal object, the circuit is completed. The wire is then pulled back a short distance, causing an electric arc that heats up to thousands of degrees Fahrenheit, melting the wire and partially melting the two pieces of metal. This creates a melt pool where all three metals merge to become one as it cools and solidifies, leaving a bead along the welded seam.

As the welding action continues down the seam, the wire melts off and more wire is fed continuously from the tip of the welding gun. At the same time, a gas is diffused from the gun, spreading around the arc to shield the welded area from contaminants in the air, such as oxygen and nitrogen.

TIG Welding

Tungsten inert gas (TIG) welding requires more skill and takes longer than MIG welding, but it offers more precision. TIG, also known as gas tungsten arc welding (GTAW), can be used to weld aluminum and alloys, such as 4130 chrom-moly.

TIG welding is similar to MIG, but instead of a consumable wire, the electrode used is a tungsten metal rod inside the welding gun. The welder holds the gun in one hand while feeding a filler rod in the other hand. As the arc creates a melt puddle from the two work pieces, the heat of the melt puddle melts the filler rod, so that all three mix together in the puddle. Like MIG welding, TIG welding guns disperse a shielding gas to protect the new weld.

A TIG welding machine also includes a foot pedal to adjust the current running through the electrical circuit created between the metal objects and the tungsten electrode. This can be used to slowly increase or decrease the heat applied to the metal, which can help prevent brittleness caused by thermal shock.

Flux-Cored Welding

A third type of welding, called flux-cored arc welding (FCAW), uses a continuously fed electrode tube in place of the wire used for MIG welding. The tube is metal on the outside, with a flux agent in the core. As the flux melts during welding action, it creates a liquid slag and gas that shields the weld from contaminants. This provides better protection for the weld than the shield gas used in MIG welding, especially where strong breezes might disperse the gas, but it also results in more spatter which must be cleaned up afterwards.

Stick Welding

Otherwise known as shielded metal arc welding (SMAW), stick welding is a two-handed method, like TIG. Stick welding uses a metal filler rod, or stick, coated with flux. As the stick material melts in the heat, the flux coating also melts, creating both a gas and a liquid slag, which act to shield the weld from oxidation. As with FCAW, shield gas does not have to be dispensed during the welding process but the leftover slag leaves a mess requiring cleanup using a sander or solvents.

Welding Equipment

Once the method of welding has been decided, the next step is to select the proper welding equipment. Welders can choose either a MIG welder or a MIG/Stick/TIG multi-process welder which can be used for all four basic types of arc welding.

Along with the proper machine, the next important piece of equipment required is a welding helmet to protect the face and especially the eyes, from the extreme heat and bright light created by the electric arc. The latest technology has made possible auto-darkening helmets with vision screens that instantly adjust to the light level so that the welder has constant visual input.

Welders also need sturdy leather gloves and shoes, as well as caps, long-sleeved cotton shirts, bibs, overalls, and/or aprons to protect their skin from sparks.

Welding Materials

Materials needed for welding include consumables, such as MIG wire and flux-cored wire in various diameters and materials, welding tips, electrode sticks or tubes, flux, and TIG or gas brazing rods.

Other useful equipment includes magnets and clamps to hold metal objects in place during welding, adjustable welding tables and workstands, and fiberglass welding blankets to prevent the spread of sparks.

Weld-on tabs in a variety of sizes and shapes are used to create flanges, holes, handles, and other mechanical parts when welded to a pipe or other metal object.

Welding Methods

Each welder develops his or her preferred welding techniques. One of the most commonly used is nicknamed “stacking dimes,” which ends up looking like a string of round coins overlapping along the length of the weld.

As the welding arc liquefies a small pool of metal, the welder pushes the melt pool ahead with the electrode, using a fluid motion similar to writing a series of the letter “e” in cursive. Alternative motions may be described as, “figure 8,” or “half-moon.” The key to each type of movement is to ensure that the electrode pushes the melt pool back and forth evenly between the two workpieces, so that both are fully welded.

Some welders prefer to pull, rather than push the melt pool along, depending on their handedness (right or left) and the position of the workpiece. When MIG welding, the choice is a personal preference.

With TIG, the welder pushes the puddle along the seam, making sure to move back and forth, all the while dipping the end of the rod in and out of the puddle with the other hand.

However, stick and flux-cored welding requires a pulling motion, to avoid welding over the melted flux slag, which creates porosity and “wormholes” in the finished weld.

Material Differences

Welding different types of metal varies, depending on the different physical characteristics of each. For example, stainless steel doesn’t transfer heat as well as other metals, so it’s easy to build up too much heat in the weld area, causing the steel to warp and reducing its corrosion resistance. To control the heat, reduce the current on the welding machine and speed up the movement of the torch.

Compared with all types of steel, aluminum has a much higher thermal conductivity, as well as a lower melting point. It is also highly reactive to air, creating a hard oxidation layer on the surface. Because this oxidation layer melts at a much higher temperature than the aluminum underneath, it must be removed with a wire brush or chemical solvent before the welding begins.

Aluminum can be welded using both TIG and MIG methods, but aluminum filler wire is quite soft and can easily get tangled in the wire feeder of a MIG gun. To prevent this, use a Teflon or plastic liner in the wire feeder and guide tubes to support the wire from the feeder to the gun.

Aluminum welding requires a higher amperage welding machine and faster welding speed than steel to avoid “burning through” the base metal, melting a hole with too much heat. Aluminum welds also must be well protected from oxidation with an inert shield gas, such as argon.

How to Rust Metal

It’s understandable that most people want to prevent their cars and power tools from rusting, but some steel objects actually gain character from having a nice rusty patina. With a few household chemicals, it’s easy to speed the oxidation process along. Below, we’ve shared the basic steps to give your outdoor decorations a charming, weathered look.

  1. Buy Materials: You might already have some of these products in your pantry, so scan through the house before buying anything. To give your steel that rusty finish, you’ll need table salt, white vinegar, and degreaser, along with measuring cups/spoons and a spray bottle. We also recommend you buy a new bottle of hydrogen peroxide, instead of using an old one in your medicine cabinet. For safety purposes, you should be wearing goggles and chemical resistant gloves at all times. Remember, you’re going to be combining harmful chemicals, so be careful!
  1. Degrease the Steel: After stripping your steel of any coating or paint, the metal will be ready for degreasing. Read the degreaser bottle’s instructions as you apply it to the metal, and take care not to touch it with your bare hands. You want the degreaser to work its magic, but you don’t want to add more oil and dirt in the process.
  1. Pickle the Steel: Yes, the next step is just like pickling cucumbers, only here you’re pickling steel. This helps to create a uniform coat of rust, instead of certain areas being rustier than others. Pour some white vinegar into the spray bottle and then spray every inch of the metal object. Let it dry in the sun, and then repeat several more times. Now, your steel will be ready for the main event.
  1. Make It Rusty: So you’ve prepped the metal object for rusting, but how does the oxidation process actually happen? First, you’ll need to create a rusting solution by combining 16oz hydrogen peroxide, 2oz white vinegar, and ½ tablespoon of salt. If possible, mix this solution in the spray bottle with some of the leftover white vinegar. Shake it up so that everything mixes well, and then start spraying down your object. If the rusting doesn’t start happening immediately, you may need to put your object in direct sunlight for a while. Heat helps the process.

After you spray the metal, let it dry, and then repeat for about 7 cycles, your steel should look like it’s aged years. Make sure you don’t touch the rust until it has fully dried out, because it might rub off. The longer it stays in the sun, the better.

How to Stop Rust

Rust on any object — whether it’s a car, power tool, or a bridge — is an unattractive and often dangerous phenomenon that should be prevented whenever possible. Typically, rust occurs when metal is exposed to water and oxygen for a prolonged period of time. Iron and oxygen combine to form iron oxide, whose properties create the flaky orange-yellow coating that we all know as rust. The initial corrosion is fairly easy to remove, but wait too long, and you’ll have a car destined for the junkyard. Below, we’ve outlined five approaches to defeating rust before it spreads.

  1. Bluing: By dipping metal objects into a solution of water, sodium hydroxide, and potassium nitrate, you give them a strong corrosion resistance. This technique is often used with guns and clocks, and the name refers to the metal’s bluish finish when immersed in the solution.
  1. Clean Your Car Regularly: It may go without saying, but washing and waxing your car is extremely important for rust prevention. Dirt can also accumulate underneath your car over time, retaining moisture, so it’s smart to spray the undercarriage often as well. Although new cars are coated with the latest chemicals to fight against rust, vintage vehicles require an attentive eye to ensure that they remain drivable.
  1. Invest in Rust Prevention Products: These over-the-counter chemicals can be found in a variety of application styles — from aerosol sprays to cloth wipes. It all depends on the object you’re trying to protect. For small tools and outdoor gear, we recommend the Sentry Solutions TUF-CLOTH. For vehicles and larger metal parts, the Boeshield T-9 aerosol can was originally designed by Boeing Aviation for their aircraft components, so it does the job.
  1. Install a Dehumidifier: By controlling the exact amount of moisture in the air, you can slow down the oxidation process in your garage, basement, or any other sealed work space. If you own or work with valuable metal objects, it’s definitely worth the small initial investment.

5. Scrape Off Rust Immediately: Rust spreads like an infection, so it’s important to deal with oxidation as soon as it appears. To help slow down the process, you can scrape off loose rust pieces with a razor blade and then scrub the affected area with warm water and soap. Finally, apply a metal conditioner to prevent further rusting, and then put a new coat of paint on the area (if necessary).

How to Bend Sheet Metal

If you don’t have a special tool for bending sheet metal (called a “sheet metal brake”), you can also do it with a vise and your bare hands, provided that the metal isn’t too thick. Below, we’ve outlined the basic materials and steps needed to bend metal for your own hobbies.

  1. Buy the Right Materials: To do the job correctly, you’ll need a vise, two form blocks (wood or metal), a calculator, protractor, tape measure, mallet, and something to write with. Depending on the metal’s thickness, you may also need a heavy-duty hammer instead of a mallet.
  1. Assess the Metal: First, use your tape measure to figure out how thick the sheet metal is, and then plug that number into this formula: (π/180) x B x (IR + K x MT).

MT is the metal thickness, K is the K-Factor (find it with this chart), IR is the inside radius, and B is the desired bend angle. With the formula completed, you’ll find the bend allowance, which is precisely how many inches the metal will expand when bent.

  1. Get Ready to Bend: Before putting the sheet metal into a vise, first mark your bend lines with a pencil, and then cut the sheet so that at least ¼” of extra room is left over. Finally, make sure the sheet is filed down smoothly, because otherwise you may get cracks in the metal.
  1. Place Forms and Sheet in Vise: Your form blocks should have the exact shape for bending your metal angle. When you clamp the sheet metal into the vise’s grip, make sure the bend lines on your blocks and sheet match up. If there is too much play in the metal and it feels wobbly when you put pressure on it, you might want to ask a friend to hold the top while you use the mallet.
  1. Bend the Metal: Lastly, you should lightly tap the sheet with a soft mallet, going from one end of the bend line to the other. This way, you’ll avoid unsightly dents and ensure that your final bend is strong.